

SPECIFICATIONS

Model

80C22.2-CR

C(CR)-series

2.2kW, 3-phase

Type of Pump

Submersible cast iron pump with a cutting device suitable for pumping sewage and wastewater

Type of Fluid

Sewage, wastewater, and water carrying solid matters

Temperature: 0 to 40°C

(High temperature model available on special request)

Discharge Bore

80mm

Motor Output

2.2kW

Power Supply

Three-phase

Starting Method

Direct on Line

Motor

Continuous-duty rated, dry-type induction motor

Insulation Class: F

Degree of Protection: IP68

No. of Poles & Speed (Synchronous Speed)

2-pole, 3000/3600min-1 (50/60Hz)

Power Supply Voltages & Rated Currents

50Hz 380V - 5.3A 400V - 5.2A 415V - 5.2A 60Hz 220V - 9.0A 380V - 5.6A 440V - 5.0A

Power Cable

Sheath: PVC

Standard Length: 10m 200 to 600V supply:

 $1 \times 4 \times 2.0$ mm², O.D. 11.8mm

Dry Weight (excluding cable)

Free Standing Type: 77kg Guide Rail Fitting Type: 68kg

Impeller

Semi-open two-channel impeller for solid-handling design, made of high-chromium cast iron, dynamically balanced. A sintered tungsten carbide alloy edge is blazed on each impeller vane.

Solids Passage 50Hz - 22 × 31mm 60Hz - 20 × 31mm

Cable Entry with Anti-Wicking Block

Watertight cable entry with strain-relief device. The antiwicking block prevents water incursion due to capillary action should the power cable be damaged or the end submerged.

Bearings

Permanently lubricated, deep-groove, double-shielded C3 ball bearings

Shaft

420 stainless steel

Shaft Seal (Mechanical Seal)

Furnished with a double-face mechanical seal located in oil chamber. Both upper and lower seal faces always run in a clean environment.

Upper Seal Faces: SiC + SiC Lower Seal Faces: SiC + SiC

Oil Seal (Lip Seal)

Used as a "Dust Seal", it protects the mechanical seal from abrasive particles.

OIL LIFTER (Patented)

Equipped in oil chamber. It forcibly supplies lubricating oil to the mechanical seal and continues to supply the oil to the upper seal faces even if lubricant falls below the rated volume.

Type of Lubricating Oil & Volume Turbine Oil (ISO VG32), 1890ml

Motor Protection Device

A circle thermal protector built in the motor housing. Directly cuts the motor circuit if excessive heat builds up or an overcurrent condition occurs in the motor.

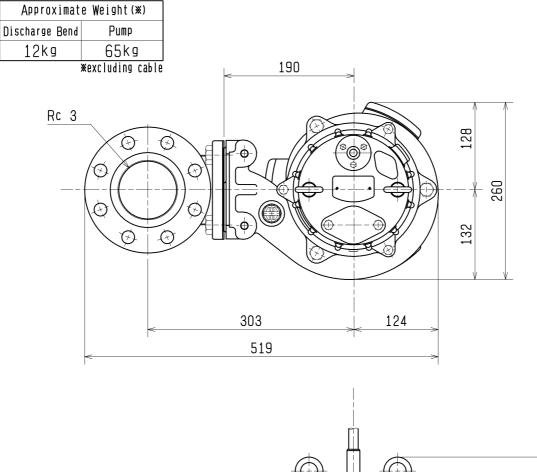
Optional Accessories

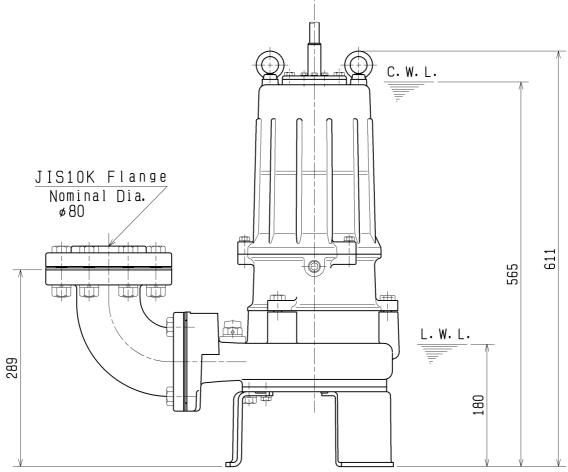
Bend Set (Free Standing Type)

- Discharge Bend
- JIS 10kg/cm² Screwed Flange

TOS Set (Guide Rail Fitting Type)

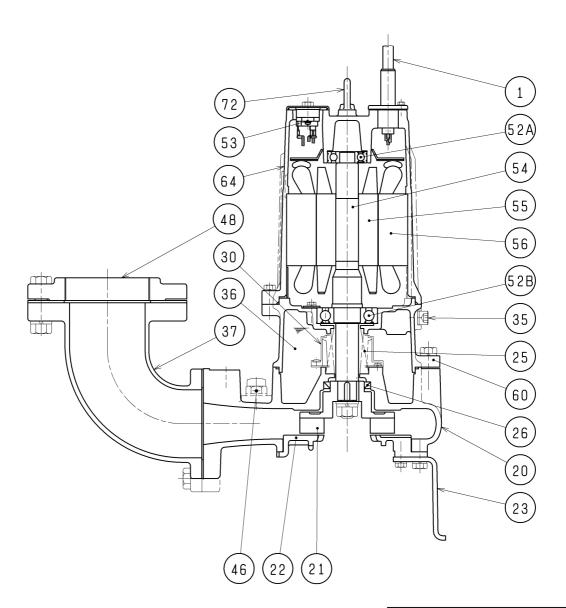
- Duckfoot Bend
- Guide Support
- Guide Hook
- Lifting Chain 5m (with Shackles)
- JIS 10kg/cm² Screwed Flange


External Leakage Sensor


STANDARD S	MODEL	80C TOS80C ATIONS	RE RE W V A A n ⁻¹	CR-61 CR-61 N QUIRED MA MA	FREQUE SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 \$\psi \times	ATIONS mm m³/mir ky 3600 min
STANDARD S	PECIFIC	ATIONS m 3/mi	RE RE V A A n-1	CR-61 N QUIRED MA MA 3 2 P/ DIRE	SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 \$\phi \times \text{S. S. 3} CT ON LI	60 H
STANDARD S	PECIFIC	ATIONS m m³/mi k	RE mm m in k W V A n ⁻¹	QUIRED MA MA 2 P/ DIRE	SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 Ø × S. S. 3 CT ON LI	ATIONS mr mr kv
		m³∕mi k	m m in K W V A A n-1	QUIRED MA MA 3 2 P/ DIRE	SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 Ø × S. S. 3 CT ON LI	m ⁹ ∕mi k 3600 min
		m³∕mi k	m m in K W V A A n-1	QUIRED MA MA 3 2 P/ DIRE	SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 Ø × S. S. 3 CT ON LI	m ³ ∕mi k 3600 min
		m³∕mi k	m m in K W V A A n-1	QUIRED MA MA 3 2 P/ DIRE	SPECIFIC 80 XX. 22 XX. 0. 9 2. 2 Ø × S. S. 3 CT ON LI	m ³ ∕mi k 3600 min
		m³∕mi k	m m in K W V A A n-1	MA MA 3 2 P/ DIRE	80 XX. 22 XX. 0. 9 2. 2	m ⁹ ∕mi k 3600 min
	φ×	m³/mì	m in X W V A A n-1	MA 3 2 P/ DIRE	XX. 22 XX. 0. 9 2. 2	m³∕mi k 3600 min
	φ ×	m³∕mi k	in	MA 3 2 P/ DIRE	XX. 0. 9 2. 2	m³∕mi k 3600 mir
	φ×		V A n-1	3 2 P/ DIRE	2. 2	3600 mir
	φ×	mir	A n-1	2 P/ DIRE	S.S.3 CT ON LI	3600 min
P /		mii	n ⁻¹	DIRE	CT ON LI	3600 min
P /		mir		DIRE	CT ON LI	, , , ,
			REM.			NE
			REM.	ARKS:	<u> </u>	
			REM	ARKS:		
1 1 1						
O A						
4/						
TE TO						
MP EFF.	$\overline{}$					
PUM						
OUTPUT			otag			
					4 2	
	OUTPUT		OUTPUT		OUTPUT	

TSURUMI MFG. CO., LTD.

DIMENSION DRAWING	No.	No. J4-34338-1
TYPE Submersible High Head Cutter Sewage Pump	MODEL	80C22.2-CR -51/61



C. W. L. : Continuous Running Water Level. L. W. L. : Lowest Running Water Level.

SECTIONAL DRAWING No. No. J4-34339-1

TYPE Submersible High Head Cutter Sewage Pump MODEL 80C22. 2-CR -51/61

REQ. SPECIFICATION

No.	DESCRIPTION	Q' TY	MATERIAL / NOTE	No.	DESCRIPTION	Q' TY	MATERIAL / NOTE
1	Cabtyre Cable	1	PVC Sheath	52B	Lower Bearing	1	6307ZZC3
20	Pump Casing	1	Gray Iron Casting	53	Motor Protector	1	
21	Impeller	1	Chromiun Iron Casting(WC Edge)	54	Shaft	1	Stainless Steel 420J2
22	Suction Cover	1	Chromiun Iron Casting	55	Rotor	1	
23	Stand	3	Structure Steel	56	Stator	1	
25	Mechanical Seal	1	H-30	60	Bearing Housing	1	Gray Iron Casting
26	Oil Seal	1	TC45629	64	Motor Frame	1	Gray Iron Casting
30	Oil Lifter	1	Plastic	72	Eye Bolt	2	Stainless Steel 304
35	Oil Plug	1	Stainless Steel 304				
36	Lubricant		Turbine Oil (ISO VG32)				
37	Discharge Bend	1	Gray Iron Casting				
46	Air Release Valve	1	Nylon				
48	Screwed Flange	1	Gray Iron Casting				
52A	Upper Bearing	1	6304ZZC3				